
Performance analysis of deep 
neural networks

making the world safe for Skynet
David Levinthal

Microsoft

Azure Cloud Services Infrastructure



Machine learning and Deep Neural Networks

• Machine learning works by building a network of simple computation 
nodes executing a “output = F(weight*input + bias)” calculation and 
using known data to find the optimal weights and biases to identify 
the patterns in the inputs that correlate to the outputs

• The model is trained on tagged data sets (training)

• The trained model can be used to predict the output for untagged 
input data (inference)

• https://github.com/David-Levinthal/machine-learning



Deep Neural Networks

• Deep Neural Networks (DNN) can be represented as fabrics of nodes, 
where the nodes represent numerical operations on (multi 
dimensional) arrays of data



Estimating CNN properties III
• Alexnet coded for Tensorflow
def __init__(self):

super(AlexnetModel, self).__init__('alexnet', 224 + 3, 512, 0.005)

def add_inference(self, cnn):

# Note: VALID requires padding the images by 3 in width and height

cnn.conv(64, 11, 11, 4, 4, 'VALID')

cnn.mpool(3, 3, 2, 2)

cnn.conv(192, 5, 5)

cnn.mpool(3, 3, 2, 2)

cnn.conv(384, 3, 3)

cnn.conv(384, 3, 3)

cnn.conv(256, 3, 3)

cnn.mpool(3, 3, 2, 2)

cnn.reshape([-1, 256 * 6 * 6])

cnn.affine(4096)

cnn.dropout()

cnn.affine(4096)

cnn.dropout()

• The 3X3 convolutions here were done with Winograd optimized functions (less than 18 FP ops)

• Measurements were done with NVProf which uses binary instrumentation (165X slow down)



Estimating RNN properties 
• LSTM cell is expected to execute 16* hidden_size2 FP ops

• Penn TreeBank (PTB) test is a simple benchmark predicting next word

• It can have a variable number of layers, hidden size and time steps
• Set hidden size=1024, time steps=32, batch size=128 and vary layer count

• There is a large non zero baseline

1 Layer 2 Layers 4 Layers

total fp_ops 2.64E+12 3.82E+12 6.16E+12

Sgemm fp_ops 2.61E+12 3.78E+12 6.12E+12

sgemm fp 

ops

sgemm fp

opps/LSTM

2 point 

slope

ratio slope/expected 

value
1 layer 2.61E+12 3.75E+07

2 layers 3.78E+12 5.43E+07 16781312 1.000244

4 layers 6.12E+12 8.78E+07 16781312 1.000244



Estimating Transformer Properties

• Built of modules consisting of a multi head attention (8 or 16 heads)

• and a residual feed forward

• With Nx = 6:  Total FP ops ~ 6 * (
3*2* (L2*dim_model +

L*dim_model2/num_head)
+ L* 64 dim_model2)

• So a Linear term and a quadratic one

• Quadratic term should dominate
• L ~ 30, dim_model = 1024 or 512



Viewing DNN performance from a hardware 
perspective
• DNN performance must be separated by training and inference

• In each case there are many run configuration options 
(hyperparameters)

• Both are effected by minbatch size: number of images/sentences 
processed together
• Creates larger matrices for GEMM functions

• Greatly effects speed

• Training has a many additional options (learning rate, dropout, 
gradient evaluation, synchronization strategy, etc)



Google TF CNNs – Inference
(Images/sec vs. Batch Size)

Perf flattens out > batch size 512
P40 very competitive with P100 at smaller batch sizes
P100 does a lot better than P40 at larger batch sizes

P4 is hampered by lower memory capacity (8 GB vs 16 and 24 GB for P40 and P100)
P4 performance pretty good for it’s price at low batch sizes (it was designed for inference where small batches are desirable)

Inference, FP32 Inference, FP32 

Inference, FP32 Inference, FP32 Inference, FP32 



Training speed vs hidden_size2 (relative units)
large baseline independent of GPU capacity



Varying model size in transformers



MLPerf https://mlperf.org/

• Objective multi framework training benchmark  run to convergence

• Compare performance/cost of cloud VMs

• Current belief is that equal versions across frameworks can be ported
Usage implementation

image_classification resnet50-tensorflow

object_detection rcnn-caffe2

recommendation neural filtering-pytorch

reinforcement minigo-tensorflow

sentiment_analysis cnn/rnn text categorization-paddle

speech_recognition deepspeech2-pytorch

translation transformer-tensorflow



Tools for performance evaluation

• Most machine learning codes are written in python
• Which invoke compiled framework libraries
• Which in turn invoke hardware specific math libraries (Cuda, MKL etc)

• As python is an interpreted language, dynamic tracing is required for 
most analysis.

• There are native python tracers, tracers built into the frameworks in 
some cases and HW based tools

• HW based tools for CPUs are tied to the performance counters

• HW based tools for GPUs are proprietary (NVProf for Nvidia) and may 
require binary instrumentation for some measurements



NVProf profiles activity on the GPU only

Slows down code by very large factor (~150X) if things like FP operation counts are collected
Not so bad if only time is collected
Output is CSV, example below is post processed to add some information about the batching and so on



Cprofile only see Python execution 



Tracing real ML networks yields a 
complicated result  (Tensorflow timeline)



Hidden size  = 1024   minibatch 5
Time stamps of some records went crazy



Framework profilers have issues

• Not clear TF profiler works

• MxNet profiler has issues with symbols/long names

• Python profilers have issues seeing into compiled libraries 
• ie the frameworks

• HW profilers
• Nvprof requires binary instrumentation (and 165X slow down) for anything 

beyond cycles



Intermediate representations

• Intermediate representations for deep neural networks
• Create a framework independent representation

• Simplifying multi framework support from HW vendors

• Enable rational approaches to network calculation optimization

• Multi layer fusion
• Ex: conv layer followed by relu layer followed by max pooling layer

• Combine to a single layer to avoid data movement

• Multi layer fusion is also done independently from IR ex: Nvidia TensorRT

• XLA and ONNX are currently popular approaches



Impact of XLA on Resnet50 @ fp32

TF R1.7, Cuda 9.1, cudnn 7.1.2 



Conclusions

• Understanding performance of machine learning is hard.

• Tools are not good

• Large fractions of time are not in matrix multiplies
• But we don’t know what is using that time

• Making HW design improvements a bit difficult


